The energy method for high-order invariants in shallow water wave equations

نویسندگان

چکیده

Third-order dispersive evolution equations are widely adopted to model one-dimensional long waves and have extensive applications in fluid mechanics, plasma physics nonlinear optics. The typical representatives the KdV equation, Camassa–Holm equation Degasperis–Procesi equation. They share many common features such as complete integrability, Lax pairs bi-Hamiltonian structure. In this paper we revisit high-order invariants for these three types of shallow water wave by energy method combination a skew-adjoint operator (1??xx)?1. Several seek Benjamin–Bona–Mahony regularized long-wave Rosenau also presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-order Accurate Spectral Difference Method for Shallow Water Equations

ABSTRACT The conservative high-order accurate spectral difference method is presented for simulation of rotating shallowwater equations. The method is formulated using Lagrange interpolations on Gauss-Lobatto points for the desired order of accuracy without suffering numerical dissipation and dispersion errors. The optimal third-order total variation diminishing (TVD) Runge-Kutta algorithm is u...

متن کامل

A Numerical Method for Extended Boussinesq Shallow-Water Wave Equations

The accurate numerical simulation of wave disturbance within harbours requires consideration of both nonlinear and dispersive wave processes in order to capture such physical effects as wave refraction and diffraction, and nonlinear wave interactions such as the generation of harmonic waves. The Boussinesq equations are the simplest class of mathematical model that contain all these effects in ...

متن کامل

On asymptotically equivalent shallow water wave equations

The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire family of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2023

ISSN: ['1873-5452', '0893-9659']

DOI: https://doi.org/10.1016/j.aml.2023.108626